SIFMA Technology Management Conference

June 20, 2007 Data Center Efficiency

Presented by Julius Neudorfer

06h

07h

04h

Copyright 2007 www.naat.com

In deciding how to best implement a strategy for supporting critical data systems, **Data Center Efficiency** is usually <u>NOT</u> the number one item on the list.

This is usually followed by the next logical question: "Where should it be located?"

Then of course: "How large does it have to be?" And the last but not least, question: "How much will it cost?"

Copyright 2007 www.naat.com

Current Design Goals of Building a Data Center 1. High Density Support 2. Flexibility 3. Expandability 4. Infrastructure Redundancy Power & Cooling Back-up Power 5. Lower Operational Costs

06h

American Access Technologies.

Most organization's data centers that were designed before 2000 were we built based on technologies did not exist or were not commonplace such as:

Blade Servers and 1U Low Profile
 Servers w/Dual/Quad Core Processors
 VM - Virtual Machines
 SAN & NAS Storage Arrays
 VOIP

Result: Datacenters that were built only 7 years ago were not designed to support today's High-Density Hardware requirements, much less tomorrow's constantly changing standards.

th American Access Technologies.

Blade Servers and 1U Low Profile
Servers w/ Dual/Quad Core Processors
VM Virtual Machines
SAN & NAS Storage Arrays
VOIP

Potential Benefits

Higher Utilization of Computing Resources
 Lower Energy Usage
 Lower Space Requirements
 Better Management

Blade Servers and 1U Low Profile
 Servers w/ Dual/Quad Core Processors
 VM Virtual Machines
 SAN & NAS Storage Arrays
 VOIP

Potential Pitfalls

 X Existing Power & Cooling Not Capable of Supporting new Hi-Density Equipment
 X Higher Energy Usage (Especially for Cooling)
 X In-Efficient Space Utilization
 X Requires Retro-fitting Power & Cooling

06h

Copyright 2007 www.naat.com

The result is that these design criterion and performance metrics have radically changed, directly affecting data center design factors such as:

Computing Capability per sq ft (i.e. MPS processing power) Storage per sq ft (Gigabytes – Terabytes) Power & Cooling per sq ft (Watts) Infrastructure Scalability - Designing with the ability to scale up or down with constantly changing systems and demand while maintaining energy efficiency

American Access Technologies.

Sample Power & Cooling Requirements High Density 1 U Servers

1U Servers	Each 1 U	Server	U	Rack of 4	0 Servers	COOLING
Model	WATTS	BTUs	1	WATTS	BTUs	TONS
Dell Power Edge 850	345	1,173	1	13,800	46,920	3.9
IBM eServer X306	350	1,190	1	14,000	47,600	4.0
HP Proliant DL360	275	935	1	11,000	37,400	3.1
Sun Fire X2100 Server	300	1,020	1	12,000	40,800	3.4
			1			
Dell Power Edge 1850	550	1,870	1	22,000	74,800	6.2
IBM eServer X336	585	1,989	1	23,400	79,560	6.6
HP Proliant DL360R4	535	1,819	1	21,400	72,760	6.1
Sun Fire X4100 Server	550	1,870	1	22,000	74,800	6.2

Challenge ... Scotti, I need More Power

Copyright 2007 www.naat.com

24 h

Sample Power & Cooling Requirements High Density Blade Servers

		COOLING						
	Model	WATTS	BTUs	U	WATTS	BTUs	TONS	
	Dell	Rac	k of 4 C					
	DELL PowerEdge 1855	5,000	17,000	7U	20,000	68,000	5.7	NK
	IBM	Rac	k of 4 C	hass	is (56 E	Blades)		Jun
	IBM BladeCenter=H Class	8,000	27,200	9U	32,000	108,800	9.1	py
	HP	Rac	k of 5 C					
	HP BladeSystem p-Class	4,500	15,300	6U	22,500	76,500	6.4	
	SUN	1	Server		(72P)	roc)		
	Sun Fire E25K Server	25,000	85,000	۲	25,000	85,000	7.1	
	Weber Genesis Silver Bar	beque		-		26,000	2.2	
Co	pyright 2007 www.naat.com			Γ		etwerk	Sam	Division
	21h 22h 23h 24h 01h 02h	03h 04h			08h 09 1 0 0 North	American Acce	ess Technolog	ies. Inc.

IBM BladeCenter H Class 9U = 14 Blades Power=8,000VA Heat=27,200 Btu/hr with 4 per 42U rack =32,000KVA Power =105,000 Btu/hr =9 Ton Cooling!!

Copyright 2007 www.naat.com 02h

NOW WITH 550 WATTS OF POWER !!! **Compact Four-Way** Supremacy is Here Watts per Rack ~ 2KW-5KW-10KW~+30KW !!!! Watts per Sq. Foot ~ 100W-150W-200W~+300W!!! 04h

Challenge ... Scotti, It's Very Very Hot in here I Need More Cooling 14 Servers@550W =7.5KW =26,000 BTUs = 1 Weber Grill !! 28 Servers@550W =15KW

42 Servers@550W =22.5KW =78,000 BTUs = 3 Weber Grills !!

=52,000 BTUs = 2 Weber Grills !!

Copyright 2007 www.naat.com 20h 21h 22h 23h 24h 01h 02h 03h 04h 05h 06

Server Power Supply Efficiency

contents

<u>Overview</u> <u>Standard Features</u> Options Memory Storage

Features <u>HPC Interconnects</u> Storage Power Specifications

Models Configuration Information - Factory Integrated Models Technical Specifications

Overview

HP ProLiant DL380 Generation 5 (G5)

Power Supply Specification - AC	Part number		380622-001						
	Spare Kit		403781-001						
Operational Input Voltage Range (Vrms)	90 to 264								
Frequency Range (Nominal) (Hz)	47 to 63 (50/60)								
Nominal Input Voltage (Vrms)	100	120	208	220	230	240			
Max Rated Output Wattage Rating	800	850	1000	1000	1000	1000			
Nominal Input Current (A rms)	10.0	8.8	5.85	5.5	5.2	4.97			
Max Rated Input Wattage Rating (Watts)	980	1035	1193	1186	1172	1169			
Max. Rated VA (Volt-Amp)	1000	1056	1217	1210	1196	1193			
Efficiency (%)	81.5	82	84	84	85	85.5			
Power Factor	0.98	0.98	0.98	0.98	0.98	0.98			
Leakage Current (mA)	0.44	0.52	0.91	0.96	1.00	1.04			
Max. Inrush Current (A peak)	30	30	30	30	30	30			
Max. Inrush Current duration (mS)	3	3	3	3	3	3			

Copyright 2007 www.naat.com

24

05h 06h 07h

Traditional-Data Center Little/NO Flexibility

-Fixed UPS Size -Pre-build for Maximum Expected Loads

08h

-Hardwire -Electrical Power Distribution

Copyright 2007 www.naat.com

Flexibility

 Traditional- Fixed Hardwire Electrical Distribution

 Modular – Flexible Power Whips and Plug-in PDUs
 = Easy Reconfiguration for Changing Loads & Equipment Types

•Rower & Cooling
•(N+1) and/or (2 N)

06h

Copyright 2007 www.naat.com

Cooling Traditional-Data Center Little/NO Flexibility

-Fixed A/C Unit Size -Pre-build for Maximum Expected Loads

Designed for Lowe Watts per Sq. ft.

High Density Loads

Copyright 2007 www.naat.com

5

- For every **\$1.00** spent on Energy to power computing equipment from **\$0.50** to **\$2.00** is spent on cooling.
- Cooling systems not specifically designed for Hi-Density Cooling not only cannot properly cool the equipment, they use far more energy.

²Copyright 2007 www.naat.com

IN-ROW Cooling Technology

High Density Hot-Aisle Containment

Power=150KW 100% Redundant (2N) Cooling=150KW (N+1) 6 x 30KW

Payload Space=12 Cabinets=504U Power & Cooling per Cab=12.5KW Floorspace=17' x 25"=425 Sq. Ft. No Raised Floor Required

VS Traditional Cooling Technology Cool Air From Perforated Floor Tiles

Power=150KW 100% Redundant (2N) Cooling=80KW (N+1) 3 x 40KW

Payload Space=10 Cabinets=420U Power per Cab=15.0KW Cooling per Cabinet Limited to 5KW* Floorspace=17' x 25"=425 Sq. Ft.

Cooling Efficiency

Return

R

A

COLD

COOLING System Types •Chilled Water •Condenser Water •Direct Expansion

04h

Geographic Location •Climate: Colder = Better •Economizer Coils

06h

Copyright 2007 www.naat.com

Return

C R

A

С

COLD

COOLING Humidity Control •De-Humidification •Re- Humidification •Re-Heat

Cooling (in) Efficiency

• Beside Cooling a function of a CRAC is Humidity Control.

- The Humidification & Reheat Process is important for maintaining proper levels of humidity (i.e 50%). However they do consume additional energy.
- Broadening the set points i.e. 30% -70% will lower costs

th American Access Technologies. Inc.

	CO			
KW Hour	Day	Month	Year	5 Years
1	24	720	8,760	43,800
		1		
Cost Per KWH	Day	Month	Year	5 Years
\$ 0.10	\$ 2.40	\$ 72.00	\$ 876.00	\$ 4,380.00
Cost Per 100 KWH	Day	Month	Year	5 Years
\$ 10.00	\$ 240.00	\$ 7,200.00	\$ 87,600.00	\$ 438,000.00
Save 5%	\$ 12.00	\$ 360.00	\$ 4,380.00	\$ 21,900.00
Save 10%	\$ 24.00	\$ 720.00	\$ 8,760,00	\$ 43.800.00

Gia Energy Information Administration

<u>Home</u> > <u>Basic Electricity Statistics</u> > State Electricity Price Date Last Updated/Reviewed: November 2006 Next Update/Review: January 2007 Date Last Updated/Reviewed: November 2006 Next Update/Review: January 2007

State Electricity Price, 2005

(cents per kilowatthour)

	All Secto	rs		Residentia	I	0	ommerci	al		Industria	I
Rank	State	Price	Rank	State	Price	Rank	State	Price	Rank	State	Price
1	HI	18.33	1	HI	20.70	1	HI	19.04	1	HI	15.79
2	NY	13.95	2	NY	15.72	2	NY	14.36	2	DC	14.13
3	NH	12.53	3	СТ	13.64	3	MA	12.42	3	NH	11.48
4	MA	12.18	4	NH	13.51	4	NH	12.06	4	RI	10.01
5	CT	12.06	5	MA	13.44	5	CA	11.92	5	NJ	9.76
6	RI	11.97	6	AK	13.30	6	RI	11.71	6	CA	9.55
7	AK	11.72	7	ME	13.23	7	AK	11.56	7	CT	9.40
8	CA	11.63	8	RI	13.04	8	СТ	11.53	8	AK	9.29
9	VT	10.95	9	VT	12.96	9	VT	11.33	9	MA	9.22
10	NJ	10.89	10	CA	12.51	10	ME	10.63	10	NY	8.23
							1				GMT

Copyright 2007 www.naat.com

24

Thank you

We hope you have benefited from the information presented here today

For a copy of this presentation please call 1-800-392-3299 or julius@naat.com

www.naat.com

06h

04h

Copyright 2007 www.naat.com