SIA Workshop Business Continuity Planning

Shrinking the

Size and Cost

Back-Up Data Centers

07h

04h

North American Access Technologies. Inc.

Copyright 2006 www.naat.com

Oct 31, 2006

This workshop will explore how to avoid over-sizing the requirements and costs of a back-up data center, without giving up the flexibility for future growth.

It will cover the challenges, as well as the techniques and solutions to design, locate and budget for a back-up data center in today's constantly changing computing environment.

All in 60 minutes ???

22h

In deciding how to best and most cost-effectively, implement a Business Continuity strategy for critical data systems, the Back-Up Data Center is usually the number one item on the list.

This is usually followed by the next logical question: **"Where should it be located?"** Then of course: **"How large does it have to be?"** And the last but not least, question: **"How much will it cost?"**

Copyright 2006 www.naat.com

24 h

01h

02h

North American Access Technologies. Inc

Design Goals of Building a Back-up Data Center

1. High Density 2. Flexibility 3. Expandability 4. Infrastructure Redundancy Power & Cooling – Back-up Power 5. Lower Build & Operation Costs

Copyright 2006 www.naat.com

02h

Back-Up Data Center Basics

Physical

- Secure Space
- Equipment Racked
- Cabling Organized

- Power

- Normal Utility
- UPS > Battery Back Up (Runtime = 5-60 Minutes)
- Back-Up Generator (Runtime = 1-7 Days >Refuel)

Environmenta

- Precision Cooling
- Humidity Controlled

02h

03h

04h

Copyright 2006 www.naat.com

Scaling Ratios

- Support Full User Loads - Contains Data for All systems

Back-Up Site – Critical Systems Only – Support Fraction of User Loads • Full Images of Data • Server Count XX% of Primary

07h

Copyright 2006 www.naat.com

02h

03h

04h

Back-up Site Critical Infrastructure External Factors – Datá - Voice - Habitable Space – Area Secure **Physical Security** Copyright 2006 www.naat.com

23h

24 h

01h

02h

Most organization's data centers that were designed before 2000 were we built based on technologies did not exist or were not commonplace such as:

Bladéservers and 1U Low Profile
Servers w/ Dual Core Processors
VM Virtual Machines
SAN & NAS Storage Arrays

04h

Copyright 2006 www.naat.com

The result is that these design criterion and performance metrics have radically changed, directly affecting data center design factors such as:

Computing Capability per sq ft (i.e. MPS processing power) Storage per sq ft (Gigabytes – Terabytes) Power & Cooling per sq ft (Watts) Infrastructure Scalability - Designing with the ability to scale up or down with constantly changing systems and demand while maintaining energy efficiency

Copyright 2006 www.naat.com

BCP Options

Outsource to Commercial DR Provider
 Lower Upfront Costs

Higher Long Term Recurring Costs

Use your Organization's Existing Sites Build Back-up data Center
Higher Up Front Cost
Lower Long Term Costs

• Hybrid Plan • Primary - Internal Resources 20h 21h Secondary - 03h Outsources

Back-up Data Center Communications Links T-1 Point-To-Point (P-P) T-1 (or Fractional) Frame Relay **(FR)** Multiple T-1 (N x T-1) (P-P or FR) T-3 (or Fractional) Internet Based VPN (T-1 > T-3) (Encrypted) Satellite Links

24 h

20h

Sample Transmission Data Throughput

Estimated Theoretical Transmission Speeds

Туре	MBits/Sec	MBytes/Sec	MB/Min	GB/Hr	10 Hrs	12 Hrs
T-1	1.54	0.19	12	0.695	- 5-7	
Т-3	45	6	338	20	203	243
10-Base-FL	10	1	75	5	45	54
100-Base-FX	100	13	750	45	450	540
OC-3	155	19	1,163	70	698	837
1000-Base-LX	1,000	125	7,500	450	4,500	5,400

Note: Actual throughput will be about 75-80% of above due to protocol overhead. Latency will impact throughput and is not factored in the above.

Copyright 2006 www.naat.com

24 h

22h

20h

BCP Geographic Issues

•Outsource to Commercial DR Provider •Logistics of Distance to DR Site

 Use your Organization's Existing Sites (Build Back-up data Center)
 Size & Number of Personnel at Alternate Site

•Hybrid Plan •Internal Resources – Primary •Outsource – Last Resort

24 h

20h

Sample Back-up Data Center Payloads

			Low - Med Density	HI Density
			2U-5U	1U & Blade
Size in Ft.	Sq. Feet	Cabinets	Servers	Servers
<mark>18 x 2</mark> 0	360	10-12	60-200	100-500
<mark>18 x 3</mark> 0	540	15-20	100-300	150-800
25 x 30	750	25-35	200-600	250-1000+
35 x 30	1000	40-50	300-900	400-2000+
50 x 30	1500	60-70	500-1400	600-3000 +
	//			

Copyright 2006 www.naat.com

24 h

Sample Back-up Data

	Low Density	Med Density	HI Density	EXT Density
	1-2 KVA	3-5 KVA	6-10 KVA	12-20 KVA+
Cabs		Total	KVA	
5	5-10	15-25	30-50	60-100+
8	8-16	24-40	48-80	100-160+
15	15-30	45-75	90-150	180-300+
25	25-50	75-125	150-250	<mark>300-500+</mark>

Sample Back-up Data Center Cooling

Cooling Requirements

Low Density HI Density

Size in Ft.	Sq. Feet	Cabinets	Tons Cool	Tons Cool
10 x 12	120	4-5	1.5-3	3-5
10 x 18	180	6-8	2-5	5-10
18 x 20	360	12-15	10-15	15-25
18 x 30	540	20-25	20-30	25-50

Sample Power & Cooling Requirements High Density 1 U Servers

1U Servers	Each 1 U	Server	U	Rack of 4	0 Servers	COOLING
Model	WATTS	BTUs	1	WATTS	BTUs	TONS
Dell Power Edge 850	345	1,173	1	13,800	46,920	3.9
IBM eServer X306	350	1,190	1	14,000	47,600	4.0
HP Proliant DL360	275	935	1	11,000	37,400	3.1
Sun Fire X2100 Server	300	1,020	1	12,000	40,800	3.4
			1			
Dell Power Edge 1850	550	1,870	1	22,000	74,800	6.2
IBM eServer X336	585	1,989	1	23,400	79,560	6.6
HP Proliant DL360R4	535	1,819	1	21,400	72,760	6.1
Sun Fire X4100 Server	550	1,870	1	22,000	74,800	6.2

Challenge ... Scotti, I need More Power

Sample Power & Cooling Requirements High Density Blade Servers

	and the second					
	Blade	Servers				COOLING
Model	WATTS	BTUs	U	WATTS	BTUs	TONS
Dell	Rac	k of 4 C	hass	sis (40 B	lades)	
DELL PowerEdge 1855	5,000	17,000	7U	20,000	68,000	5.7
IBM	Rac	k of 4 C	hass	sis (56 B	lades)	
IBM BladeCenter=H Class	8,000	27,200	9U	32,000	108,800	9.1
HP	Rac	k of 5 Cl	nass	is (40 E	Blades)	
HP BladeSvstem p-Class	4.500	15.300	6U	22.500	76.500	6.4
	,	-,		,		
SUN	1	Server		(72Pr	oc)	
Sun Fire E25K Server	25,000	85,000	~	25,000	, 85,000	7.1
Weber Genesis Silver Bar	beque		-krun		26,000	2.2
pyright 2006 www.naat.com 21h 22h 23h 24h 01h 02h	03h 04h				atu ork	

Challenge ... Scotti, It's Very Very Hot in here I Need More Cooling

Copyright 2006 www.naat.com 20h 21h 22h 23h 24h 01h 02h

03h

04h

14 Servers@550W =7.5KW =26,000 BTUs = 1 Weber Grill !!

28 Servers@550W =15KW =52,000 BTUs = 2 Weber Grills !!

42 Servers@550W =22.5KW =78,000 BTUs = 3 Weber Grills !!

IBM BladeCenter H Class 9U = 14 Blades Power=8,000VA Heat=27,200 Btu/hr with 4 per 42U rack =32,000KVA Power =105,000 Btu/hr =9 Ton Cooling!!

Copyright 2006 www.naat.com

Compact Four-Way NOW Supremacy is Here

04h

NOW WITH 550 WATTS OF POWER !!!

Watts per Rack ~ 2KW-5KW-10KW~+30KW Watts per Sq. Foot ~ 100W-150W-200W~+300W!!!!

IN-ROW Cooling Technology

High Density Hot-Aisle Containment

Power=150KW 100% Redundant (2N) Cooling=150KW (N+1) 6 x 30KW

Payload Space=12 Cabinets=504U Power & Cooling per Cab=12.5KW Floorspace=17' x 25"=425 Sq. Ft. No Raised Floor Required

VS Traditional Cooling Technology Cool Air From Perforated Floor Tiles

Power=150KW 100% Redundant (2N) Cooling=80KW (N+1) 3 x 40KW

Payload Space=10 Cabinets=420U Power per Cab=15.0KW Cooling per Cabinet Limited to 5KW* Floorspace=17' x 25"=425 Sq. Ft.

UPS is External for both examples

04h

*Cooling Limited by Airflow

North American Access Technologies, Inc.

Copyright 2006 www.naat.com

02h

20h 21h 22h 23h 24h

Flexibility - Traditional - Fixed Hardwire Electrical Distribution Modular – Flexible Power Whips and Plug-in PDUs = Easy Reconfiguration for **Changing Loads & Equipment Types Expandability & Growth** -Pre-build for Maximum (Traditional ~ Maximum Loads) +Modular = Growth On-Demand Infrastructure Redundancy

•Power & Cooling •(N+1) and/or (2 N) •• •• •• ••

Sample Back-up Data Center Cost Ranges

Sample Data Center Room Size vs Cost Racks & Power

Excluding Cooling System Costs Low Density HI Density

Size in Ft.	Sq. Feet	Cabinets	Cost \$K	Cost \$K
10 x 12	120	4-5	10-20	20-40
10 x 18	180	6-8	15-25	25-50
18 x 20	360	12-15	25-40	40-100
18 x 30	540	20-25	50-100	100-250

Copyright 2006 www.naat.com

24 h

01h

23h

22h

20h

Sample Data Center

KW Hour	Day	Month	Year	5 Years
1	24	720	8,760	43,800
				7
Cost Per				
KWH	Day	Month	Year	5 Years
\$ 0.10	\$ 2.40	\$ 72.00	\$ 876.00	\$ 4,380.00
Cost Per				
100 KWH	Day	Month	Year	5 Years
\$ 10.00	\$ 240.00	\$ 7,200.00	\$ 87,600.00	\$ 438,000.00
Save 5%	\$ 12.00	\$ 360.00	\$ 4,380.00	\$ 21,900.00
Copyright 2006	www.naat.com	th 03h 04h 05h 06h	07h 08h 09 0h	work Servic

Sample Data Center Cooling Power Costs

Cost Per							
100 KWH	Day	Month		Year		5 Years	
\$ 10.00	\$ 240.00	\$ 7,	200.00	\$ 87,600.00		\$	438,000.00
32			5 5 7		$ $ $ $ $>$	7	1
Power Cos	t for Coolir	ig / per	cent of E	Elec	trical Load	=10	00KW
% of Load	KW	Мо	nth		Year		5 Years
40%	40	\$ 2,	880.00	\$	35,040.00	\$	175,200.00
60%	60	\$ 4	320.00	\$	52,560.00	\$	262,800.00
<mark>80%</mark>	80	\$ 5	760.00	\$	70,080.00	\$	350,400.00

Copyright 2006 www.naat.com

24 h

Systems with Replicated Data at Multiple Sites = High Availability

= Disaster Avoidanc

= Business Continuity

04h

Man-Made Disaster in the Making

Old Network

- Undocumented
- Cables Unlabeled & Tangled
- Switch Ports
 - Not Mapped to Drops
 Difficult to Manage

New Network

08h

–Fully Documented
–Cables Labeled
–Switch Ports

Mapped to Drops
–Easy to Manage

Be Prepared.. Data Centers <u>On Demand</u>

111

T

Reliability Provider CERTIFIED

Disaster Recovery Mobile Emergency Datacenter

Please Consider NAAT Your Business Continuity Source for

 Computer and Network Consulting - Systems Integration Products -APC - HP/Compaq - Cisco - IBM -Avaya - Mitel

07h

22h

24 h

01h

Business Continuity Consulting Services Data Center Design Project Planning Project Management Implementation Support Infrastructure Upgrade

merican Access Technologies

02h

22h

23h

04h

Act Now for a Free Site Assessment and receive a Free Attache Case

22h

23h

If your organization consists of 200 or more users or has 10 KVA of individual or combined UPS systems, please call for a Free Site Assessment and you will receive this Expandable Attache Case.

rican Access Technologie.

Limit 1 per customer.

Thank you

We hope you have benefited from the information presented here today

For a copy of this presentation please call 1-800-392-3299 or info@naat.com

www.naat.com

04h

Copyright 2006 www.naat.com