Most organization's data centers that were designed before 2000 were we built based on technologies did not exist or were not commonplace such as:

Blade Servers and 1U Low Profile
Servers w/ Dual/Quad Core Processors
VM Virtual Machines
SAN & NAS Storage Arrays
VOIP

Result: Datacenters that were built only 7 years ago were not designed to support today's High-Density Hardware requirements, much less tomorrow's constantly changing standards.

Copyright 2007 www.naat.com

The result is that these design criterion and performance metrics have radically changed, directly affecting data center design factors such as:

Computing Capability per sq ft (i.e. MPS processing power) Storage per sq ft (Gigabytes – Terabytes) Power & Cooling per sq ft (Watts) Infrastructure Scalability - Designing with the ability to scale up or down with constantly changing systems and demand while maintaining energy efficiency

04h

06h

Copyright 2007 www.naat.com

Sample Data Center Power Requirements

	Low Density	Med Density	HI Density	EXT Density				
	1-2 KVA	3-5 KVA	6-10 KVA	12-20 KVA+				
Cabs	Total KVA							
5	5-10	15-25	30-50	60-100+				
8	8-16	24-40	48-80	<mark>100-160+</mark>				
15	15-30	45-75	90-150	<mark>180-300+</mark>				
25	25-50	75-125	150-25 0	<mark>300-500+</mark>				

Sample Power & Cooling Requirements High Density 1 U Servers

Information based on published specification

1U Servers	Each 1 U	Server	U	Rack of 40 Servers		COOLING	
Model	WATTS	BTUs	1	WATTS	BTUs	TONS	
Dell Power Edge 850	345	1,173	1	13,800	46,920	3.9	
IBM eServer X306	350	1,190	1	14,000	47,600	4.0	
HP Proliant DL360	275	935	1	11,000	37,400	3.1	
Sun Fire X2100 Server	300	1,020	1	12,000	40,800	3.4	
			1				
Dell Power Edge 1850	550	1,870	1	22,000	74,800	6.2	
IBM eServer X336	585	1,989	1	23,400	79,560	6.6	
HP Proliant DL360R4	535	1,819	1	21,400	72,760	6.1	
Sun Fire X4100 Server	550	1,870	1	22,000	74,800	6.2	

Challenge ... for Data Centers based on 50-100 Watts Sq Ft

Copyright 2007 www.naat.com

24 h

23h

21h

22h

Sample Power & Cooling Requirements High Density Blade Servers

	Blade	Servers				COOLING	
Model	WATTS	BTUs	U	WATTS	BTUs	TONS	
Dell	Rac	k of 4 C	hass	sis (40 B	lades)		
DELL PowerEdge 1855	5,000	17,000	7U	20,000	68,000	5.7	
IBM	Rac	k of 4 C	hass	sis (56 B	lades)		
IBM BladeCenter=H Class	8,000	27,200	9U	32,000	108,800	9.1	Ÿ
							L
HP	Rac	k of 5 C	hass	is (40 E	Blades)		
HP BladeSystem p-Class	4,500	15,300	6U	22,500	76,500	6.4	
SUN	1	Server		(72Pr	oc)		
Sun Fire E25K Server	25,000	85,000	~	25,000	85,000	7.1	
Weber Genesis Silver Bar	beque	-	-6-1-		26,000	2.2	
nformation based on published sp Copyright 2007 www.naat.co	pecification				twork	Serv	1
					American Acco	ess Technolog	170

Challenge ... It's Very Very Hot in here My Servers are Cooked

Per Cabine

14 Servers@550W =7.5KW =26,000 BTUs = 1 Weber Grill !!

28 Servers@550W =15KW =52,000 BTUs = 2 Weber Grills !!

42 Servers@550W =22.5KW =78,000 BTUs = 3 Weber Grills !!

06h

07h

Information based on published specification 21h 22h 23h 24 h 01h 02h 03h 04h 04 Copyright 2007 www.naat.com

IBM BladeCenter H Class 9U = 14 Blades Power=8,000VA Heat=27,200 Btu/hr with 4 per 42U rack =32,000KVA Power =105,000 Btu/hr =9 Ton Cooling!! Copyright 2007 www.naat.com

NOW WITH 550 WATTS OF POWER !!! **Compact Four-Way** Supremacy is Here Watts per Rack ~ 2KW-5KW-10KW~+30KW !!! Watts per Sq. Foot ~ 100W-150W-200W~+300W!!!! Information based on published specification

Traditional-Data Center Little/NO Flexibility

-Fixed UPS Size -Pre-build for Maximum Expected Loads

Copyright 2007 www.naat.com

Flexibilit

Traditional- Fixed Hardwire Electrical
 Distribution
 Modular – Flexible Power Whips and Plug-in
 PDUs

 Easy Reconfiguration for
 Changing Loads & Equipment Types

Expandability & Growth

Traditional- -Pre-build for Maximum (Traditional ~ Maximum Loads) +Modular = Growth On-Demand

Sample Data Center

		OWEI	00313	1 1 1 1 1 1 1
KW Hour	Day	Month	Year	5 Years
1	24	720	8,760	43,800
				7
Cost Per				
KWH	Day	Month	Year	5 Years
\$ 0.10	\$ 2.40	\$ 72.00	\$ 876.00	\$ 4,380.00
		-		
Cost Per				
100 KWH	Day	Month	Year	5 Years
\$ 10.00	\$ 240.00	\$ 7,200.00	\$ 87,600.00	\$ 438,000.00
		•		
Save 5%	\$ 12.00	\$ 360.00	\$ 4,380.00	\$ 21,900.00

Cooling Traditional-Data Center Little/NO Flexibility

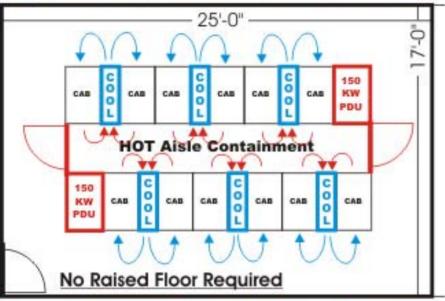
-Fixed A/C Unit Size -Pre-build for Maximum Expected Loads

03h

04h

06h

08h



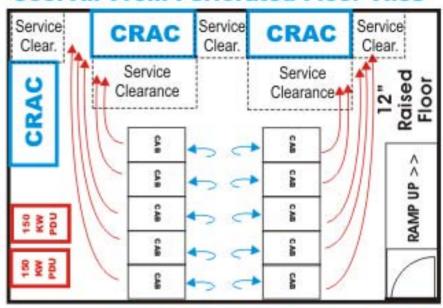
Traditional CRACs were not designed to cool High-Density Racks. They can actually cost 100-200% more to run than the server loads, and still not properly cool the racks.

Copyright 2007 www.naat.com 20h 21h 22h 23h 24<mark>h 01h 02</mark>h

IN-ROW Cooling Technology

High Density Hot-Aisle Containment

Power=150KW 100% Redundant (2N) Cooling=150KW (N+1) 6 x 30KW


Payload Space=12 Cabinets=504U Power & Cooling per Cab=12.5KW Floorspace=17' x 25"=425 Sq. Ft. No Raised Floor Required

Copyright 2007 www.naat.com

23h

24 h

VS Traditional Cooling Technology Cool Air From Perforated Floor Tiles

Power=150KW 100% Redundant (2N) Cooling=80KW (N+1) 3 x 40KW

Payload Space=10 Cabinets=420U Power per Cab=15.0KW Cooling per Cabinet Limited to 5KW* Floorspace=17' x 25"=425 Sq. Ft.

UPS is External for both examples

*Cooling Limited by Airflow

Bh OF CONTRACTOR CONTR

Sample Data Center

Cost Per									
100 KWH	Day	Month	Year	5 Years					
\$ 10.00	\$ 240.00	\$ 7,200.00	\$ 86,400.00	\$ 432,000.00					
21		522		5 1 2 2					
Power Cost for Cooling / percent of Electrical Load=100KW									
% of Load	KW	Month	Year	5 Years					
50%	50	\$ 3,600.00	\$ 43,200.00	\$ 216,000.00					
75%	80	\$ 5,400.00	\$ 64,800.00	\$ 324,000.00					
100%	100	\$ 7,200.00	\$ 86,400.00	\$ 432,000.00					
150%	150	\$ 10,800.00	\$ 129,600.00	\$ 648,000.00					
200%	200	\$ 14,400.00	\$ 172,800.00	\$ 864,000.00					
300%	300	\$ 21,600.00	\$ 259,200.00	\$ 1,296,000.00					
			/2						

Copyright 2007 www.naat.com

24 h

By reviewing the design and equipment of your data center, proper support for High-Density systems can be achieved, while significant energy saving can be realized.

Please contact us to discuss your requirements

1-800-392-3299 or info@naat.com

<u>www.naat.com</u>

065

04h

Copyright 2007 www.naat.com

01h